Unveiling Resistance and Virulence Mechanisms under Darwinian Positive Selection for Novel Drug Discovery for Gardnerella vaginalis
-
Published:2024-08-01
Issue:3
Volume:3
Page:120-135
-
ISSN:2674-0710
-
Container-title:Venereology
-
language:en
-
Short-container-title:Venereology
Author:
Sousa Eduarda Guimarães1ORCID, Felice Andrei Giacchetto2ORCID, Dominici Fabiana Vieira2ORCID, Jaiswal Arun Kumar1ORCID, Pedrosa Mariana Letícia Costa1, Reis Luiza Pereira1, Gomes Lucas Gabriel Rodrigues1, Azevedo Vasco Ariston de Carvalho1ORCID, Soares Siomar de Castro2ORCID
Affiliation:
1. Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Department of General Biology, Federal University of Minas Gerais, Pampulha Campus, Belo Horizonte 31270-901, MG, Brazil 2. Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Educational Center Campus, Uberaba 38025-180, MG, Brazil
Abstract
Gardnerella vaginalis is a Gram-variable bacillus capable of causing bacterial vaginosis, a condition prevalent in reproductive-age women, this bacterium is present in almost 100% of cases and is also considered a gateway to various sexually transmitted infections. This organism exhibits high pathogenicity linked to virulence and resistance genes acquired throughout evolution, showcasing elevated resistance to a broad spectrum of drug classes. This study conducted comparative genomic analyses to identify these genes and correlate their presence with positive Darwinian selection. Additionally, new drug targets were selected through docking and molecular modeling, guided by the heightened antimicrobial resistance exhibited by this microbial species. The available genomes of G. vaginalis were analyzed, and the orthologous genes were delineated and positively selected, whereby 29 groups were found. Of these genes, one of great importance was predicted, Mef(A), which is related to resistance to the macrolide group of antibiotics, which are one of the main choices for the treatment of sexually transmitted infections. Additionally, two potential protein candidates were selected as drug targets. These proteins were linked with a natural compound each and are considered good potential drug targets. The analyses in this study contribute to analyzing the evolution of the species and how resistance genes are related to their permanence as a potential pathogen.
Reference68 articles.
1. Gardnerella Vaginalis in Perinatology: An Overview of the Clinicopathological Correlation;Wong;Malays. J. Pathol.,2018 2. Mohammadzadeh, R., Kalani, B.S., Kashanian, M., Oshaghi, M., and Amirmozafari, N. (2019). Prevalence of Vaginolysin, Sialidase and Phospholipase Genes in Gardnerella Vaginalis Isolates between Bacterial Vaginosis and Healthy Individuals. Med. J. Islam. Repub. Iran, 33. 3. Shaskolskiy, B., Dementieva, E., Leinsoo, A., Runina, A., Vorobyev, D., Plakhova, X., Kubanov, A., Deryabin, D., and Gryadunov, D. (2016). Drug Resistance Mechanisms in Bacteria Causing Sexually Transmitted Diseases and Associated with Vaginosis. Front. Microbiol., 7. 4. Lactobacillus Crispatus Represses Vaginolysin Expression by BV Associated Gardnerella Vaginalis and Reduces Cell Cytotoxicity;Castro;Anaerobe,2018 5. Analysis of Adherence, Biofilm Formation and Cytotoxicity Suggests a Greater Virulence Potential of Gardnerella Vaginalis Relative to Other Bacterial-Vaginosis-Associated Anaerobes;Patterson;Microbiology,2010
|
|