Decoupled Cross-Modal Transformer for Referring Video Object Segmentation

Author:

Wu Ao1,Wang Rong12,Tan Quange1,Song Zhenfeng1

Affiliation:

1. School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China

2. Key Laboratory of Security Prevention Technology and Risk Assessment of Ministry of Public Security, Beijing 100038, China

Abstract

Referring video object segmentation (R-VOS) is a fundamental vision-language task which aims to segment the target referred by language expression in all video frames. Existing query-based R-VOS methods have conducted in-depth exploration of the interaction and alignment between visual and linguistic features but fail to transfer the information of the two modalities to the query vector with balanced intensities. Furthermore, most of the traditional approaches suffer from severe information loss in the process of multi-scale feature fusion, resulting in inaccurate segmentation. In this paper, we propose DCT, an end-to-end decoupled cross-modal transformer for referring video object segmentation, to better utilize multi-modal and multi-scale information. Specifically, we first design a Language-Guided Visual Enhancement Module (LGVE) to transmit discriminative linguistic information to visual features of all levels, performing an initial filtering of irrelevant background regions. Then, we propose a decoupled transformer decoder, using a set of object queries to gather entity-related information from both visual and linguistic features independently, mitigating the attention bias caused by feature size differences. Finally, the Cross-layer Feature Pyramid Network (CFPN) is introduced to preserve more visual details by establishing direct cross-layer communication. Extensive experiments have been carried out on A2D-Sentences, JHMDB-Sentences and Ref-Youtube-VOS. The results show that DCT achieves competitive segmentation accuracy compared with the state-of-the-art methods.

Funder

Double First-Class Innovation Research Project for the People’s Public Security University of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3