A Context-Aware Smartphone-Based 3D Indoor Positioning Using Pedestrian Dead Reckoning

Author:

Khalili Boshra,Ali Abbaspour RahimORCID,Chehreghan Alireza,Vesali Nahid

Abstract

The rise in location-based service (LBS) applications has increased the need for indoor positioning. Various methods are available for indoor positioning, among which pedestrian dead reckoning (PDR) requires no infrastructure. However, with this method, cumulative error increases over time. Moreover, the robustness of the PDR positioning depends on different pedestrian activities, walking speeds and pedestrian characteristics. This paper proposes the adaptive PDR method to overcome these problems by recognizing various phone-carrying modes, including texting, calling and swinging, as well as different pedestrian activities, including ascending and descending stairs and walking. Different walking speeds are also distinguished. By detecting changes in speed during walking, PDR positioning remains accurate and robust despite speed variations. Each motion state is also studied separately based on gender. Using the proposed classification approach consisting of SVM and DTree algorithms, different motion states and walking speeds are identified with an overall accuracy of 97.03% for women and 97.67% for men. The step detection and step length estimation model parameters are also adjusted based on each walking speed, gender and motion state. The relative error values of distance estimation of the proposed method for texting, calling and swinging are 0.87%, 0.66% and 0.92% for women and 1.14%, 0.92% and 0.76% for men, respectively. Accelerometer, gyroscope and magnetometer data are integrated with a GDA filter for heading estimation. Furthermore, pressure sensor measurements are used to detect surface transmission between different floors of a building. Finally, for three phone-carrying modes, including texting, calling and swinging, the mean absolute positioning errors of the proposed method on a trajectory of 159.2 m in a multi-story building are, respectively, 1.28 m, 0.98 m and 1.29 m for women and 1.26 m, 1.17 m and 1.25 m for men.

Funder

The Citadel School of Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3