A Fast Estimation Method for Direction of Arrival Using Tripole Vector Antenna

Author:

Zhang Bodong,Zou Xuan,Zhang Tingyi,Tang Yunong,Zeng Hao

Abstract

The tripole vector antenna comprises three orthogonal dipole antennas, so it could completely capture all the electric field of the incident electromagnetic (EM) wave. Then, the electric field information could be used to estimate the direction of arrival (DOA) of the EM wave if two conditions are satisfied. One is that there exists only one single EM wave in space. The other is that the EM wave is elliptically or circularly polarized. The new estimation method obtains two snapshot vectors through the output of a tripole antenna and computes their cross-product vector. Furthermore, the direction of the cross-product vector is used to estimate the DOA of the EM wave directly. We analyze the statistical characteristics of the DOA estimation error to prove that the new scheme is an asymptotic unbiased estimation. Furthermore, unlike the existing Multiple Signal Classification (MUSIC)-based algorithms, the proposed approach only need one tripole vector antenna instead of an antenna array. Meanwhile, the new method also outperforms existing MUSIC-based algorithms in the term of computational complexity. Finally, the performance and advantages of the proposed method are verified by numerical simulations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Y-Shaped Dipole High-Frequency Antenna Analysis: An Overview Design as Alternative for Microstrip Antennas;2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2023-11-19

2. Polarization-Aware Prediction of Mobile Radio Wave Propagation Based on Complex-Valued and Quaternion Neural Networks;IEEE Access;2022

3. Atomic Network-Based DOA Estimation Using Low-Bit ADC;Electronics;2021-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3