Abstract
This study aimed to explore the mechanism of fucoidan in chronic kidney disease (CKD)-triggered cognitive dysfunction. The adenine-induced ICR strain CKD mice model was applied, and RNA-Seq was performed for differential gene analysis between aged-CKD and normal mice. As a result, fucoidan (100 and 200 mg kg−1) significantly reversed adenine-induced high expression of urea, uric acid in urine, and creatinine in serum, as well as the novel object recognition memory and spatial memory deficits. RNA sequencing analysis indicated that oxidative and inflammatory signaling were involved in adenine-induced kidney injury and cognitive dysfunction; furthermore, fucoidan inhibited oxidative stress via GSK3β-Nrf2-HO-1 signaling and ameliorated inflammatory response through regulation of microglia/macrophage polarization in the kidney and hippocampus of CKD mice. Additionally, we clarified six hallmarks in the hippocampus and four in the kidney, which were correlated with CKD-triggered cognitive dysfunction. This study provides a theoretical basis for the application of fucoidan in the treatment of CKD-triggered memory deficits.
Funder
National Natural Science Foundation of China
Special Funds for Science and Technology Development of Zhanjiang City
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献