A Bootstrap Framework for Aggregating within and between Feature Selection Methods

Author:

Salman Reem,Alzaatreh Ayman,Sulieman Hana,Faisal Shaimaa

Abstract

In the past decade, big data has become increasingly prevalent in a large number of applications. As a result, datasets suffering from noise and redundancy issues have necessitated the use of feature selection across multiple domains. However, a common concern in feature selection is that different approaches can give very different results when applied to similar datasets. Aggregating the results of different selection methods helps to resolve this concern and control the diversity of selected feature subsets. In this work, we implemented a general framework for the ensemble of multiple feature selection methods. Based on diversified datasets generated from the original set of observations, we aggregated the importance scores generated by multiple feature selection techniques using two methods: the Within Aggregation Method (WAM), which refers to aggregating importance scores within a single feature selection; and the Between Aggregation Method (BAM), which refers to aggregating importance scores between multiple feature selection methods. We applied the proposed framework on 13 real datasets with diverse performances and characteristics. The experimental evaluation showed that WAM provides an effective tool for determining the best feature selection method for a given dataset. WAM has also shown greater stability than BAM in terms of identifying important features. The computational demands of the two methods appeared to be comparable. The results of this work suggest that by applying both WAM and BAM, practitioners can gain a deeper understanding of the feature selection process.

Funder

American University of Sharjah

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference31 articles.

1. A Supervised Feature Selection Approach Based on Global Sensitivity;Sulieman;Arch. Data Sci. Ser. A (Online First),2018

2. Integer programming models for feature selection: New extensions and a randomized solution algorithm

3. Review and evaluation of feature selection algorithms in synthetic problems;González-Navarro;CORR,2011

4. Data mining feature selection for credit scoring models

5. Metalearning: a survey of trends and technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3