Abstract
Simultaneous detection of carbon dioxide (CO2) and oxygen (O2) has attracted considerable interest since CO2 and O2 play key roles in various industrial and domestic applications. In this study, a new approach based on a fluorescence ratiometric referencing method was reported to develop an optical dual sensor where platinum (II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) complex used as the O2-sensitive dye, CdSe/ZnS quantum dots (QDs) combined with phenol red used as the CO2-sensitive dye, and CdSe/ZnS QDs used as the reference dye for the simultaneous detection of O2 and CO2. All the dyes were immobilized in a gas-permeable matrix poly (isobutyl methacrylate) (PolyIBM) and subjected to excitation using a 380 nm LED. The as-obtained distinct fluorescence spectral intensities were alternately exposed to analyte gases to observe changes in the fluorescence intensity. In the presence of O2, the fluorescence intensity of the Pt (II) complex was considerably quenched, while in the presence of CO2, the fluorescence intensity of QDs was increased. The corresponding ratiometric sensitivities of the optical dual sensor for O2 and CO2 were approximately 13 and 144, respectively. In addition, the response and recovery for O2 and CO2 were calculated to be 10 s/35 s and 20 s/60 s, respectively. Thus, a ratiometric optical dual gas sensor for the simultaneous detection of O2 and CO2 was successfully developed. Effects of spurious fluctuations in the intensity of external and excitation sources were suppressed by the ratiometric sensing approach.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献