A Ratiometric Optical Dual Sensor for the Simultaneous Detection of Oxygen and Carbon Dioxide

Author:

Kumar DivyanshuORCID,Chu Cheng-Shane

Abstract

Simultaneous detection of carbon dioxide (CO2) and oxygen (O2) has attracted considerable interest since CO2 and O2 play key roles in various industrial and domestic applications. In this study, a new approach based on a fluorescence ratiometric referencing method was reported to develop an optical dual sensor where platinum (II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) complex used as the O2-sensitive dye, CdSe/ZnS quantum dots (QDs) combined with phenol red used as the CO2-sensitive dye, and CdSe/ZnS QDs used as the reference dye for the simultaneous detection of O2 and CO2. All the dyes were immobilized in a gas-permeable matrix poly (isobutyl methacrylate) (PolyIBM) and subjected to excitation using a 380 nm LED. The as-obtained distinct fluorescence spectral intensities were alternately exposed to analyte gases to observe changes in the fluorescence intensity. In the presence of O2, the fluorescence intensity of the Pt (II) complex was considerably quenched, while in the presence of CO2, the fluorescence intensity of QDs was increased. The corresponding ratiometric sensitivities of the optical dual sensor for O2 and CO2 were approximately 13 and 144, respectively. In addition, the response and recovery for O2 and CO2 were calculated to be 10 s/35 s and 20 s/60 s, respectively. Thus, a ratiometric optical dual gas sensor for the simultaneous detection of O2 and CO2 was successfully developed. Effects of spurious fluctuations in the intensity of external and excitation sources were suppressed by the ratiometric sensing approach.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3