A Two-Layer Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

Author:

Zhang Pan1,Xin Shijin1,Wang Yunwen1,Xu Qing1,Chen Chunsheng2,Chen Wei3,Dong Haiying3

Affiliation:

1. State Grid Baiyin Power Supply Company, State Grid Gansu Power Company, Baiyin 730900, China

2. State Grid Baiyin Pearl Power (Group) Co., Baiyin 730900, China

3. School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

A two-layer control strategy for the participation of multiple battery energy storage systems in the secondary frequency regulation of the grid is proposed to address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and load when a large number of new energy sources are connected to the grid. A comprehensive allocation model based on area regulation requirement (ARR) signals and area control error (ACE) signals is proposed to obtain the total output of the secondary frequency modulation (FM) demand with a higher degree of adaptation when the FM units respond to the automatic generation control command, and the total output is reasonably allocated to each FM unit by using the two-layer control. Considering the dynamic fluctuation of the grid frequency, the fluctuation is dynamically suppressed in real-time by applying model predictive control to successfully forecast the frequency deviation while realizing the deviation-free correction in the frequency dynamic correction layer. The optimal power distribution of FM units based on the distributed control concept, as well as the power depth of each unit, are coordinated in the equalization control layer while keeping a decent battery charge level. Finally, in Matlab/Simulink, the proposed control approach is simulated and validated. The findings show that the suggested control approach can suppress frequency difference fluctuation, keep the battery charged, and reduce the unit’s FM loss.

Funder

State Grid Baiyin Power Supply Company Science and Technology Plan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3