Magnesium Hydride: Investigating Its Capability to Maintain Stable Vapor Film

Author:

Skvorčinskienė Raminta1ORCID,Eimontas Justas1,Bašinskas Matas1,Vorotinskienė Lina1,Urbonavičius Marius2ORCID,Kiminaitė Ieva1ORCID,Maziukienė Monika1,Striūgas Nerijus1ORCID,Zakarauskas Kęstutis1,Makarevičius Vidas3ORCID

Affiliation:

1. Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania

2. Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania

3. Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania

Abstract

In order to implement timely sustainability solutions, road transportation is gradually transitioning to electric power. However, the maritime sector faces challenges in finding ways to shift towards more sustainable fuel. From the perspective of long-distance shipping, electric transport is economically impractical. Therefore, alternative solutions or proposals contributing to the global reduction of pollutant gas emissions in maritime transport are vitally important. This investigation aims to find solutions that enhance the ecological efficiency of intercontinental cargo ships. In this study, an assessment of a magnesium hydride coating was conducted as it is a prospective coating capable of reducing hydrodynamic resistance to save fuel. Due to MgH2’s ability to release hydrogen at higher temperatures or during a reaction with water, it is expected that this could contribute to an enhancement of the Leidenfrost effect, maintaining a vapor layer on the surface. Samples prepared in situ via reactive magnetron sputtering were submitted to thermal analysis for dehydrogenation range evaluation and the experimental rig for critical (Leidenfrost) temperature identification. In conclusion, thermogravimetric (TG) analysis indicated that the volatile content, primarily hydrogen, in the sample reached approximately 13% by mass. The TG curve exhibited variations in MgH2 mass, with the most significant mass loss occurring at 300 °C. After conducting critical temperature experiments, the potential of MgO coating was observed to be greater than anticipated when compared to the main material, MgH2.

Funder

Research Council of Lithuania

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3