Optimizing the Neural Network Loss Function in Electrical Tomography to Increase Energy Efficiency in Industrial Reactors

Author:

Kulisz Monika1ORCID,Kłosowski Grzegorz1ORCID,Rymarczyk Tomasz23ORCID,Słoniec Jolanta1ORCID,Gauda Konrad2,Cwynar Wiktor4

Affiliation:

1. Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland

2. Institute of Computer Science and Innovative Technologies, WSEI University, 20-209 Lublin, Poland

3. Research & Development Centre, Netrix S.A., 20-704 Lublin, Poland

4. Institute of Public Administration and Business, WSEI University, 20-209 Lublin, Poland

Abstract

This paper presents innovative machine-learning solutions to enhance energy efficiency in electrical tomography for industrial reactors. Addressing the key challenge of optimizing the neural model’s loss function, a classifier tailored to precisely recommend optimal loss functions based on the measurement data is designed. This classifier recommends which model, equipped with given loss functions, should be used to ensure the best reconstruction quality. The novelty of this study lies in the optimal adjustment of the loss function to a specific measurement vector, which allows for better reconstructions than that by traditional models trained based on a constant loss function. This study presents a methodology enabling the development of an optimal loss function classifier to determine the optimal model and loss function for specific datasets. The approach eliminates the randomness inherent in traditional methods, leading to more accurate and reliable reconstructions. In order to achieve the set goal, four models based on a simple LSTM network structure were first trained, each connected with various loss functions: HMSE (half mean squared error), Huber, l1loss (L1 loss for regression tasks—mean absolute error), and l2loss (L2 loss for regression tasks—mean squared error). The best classifier training results were obtained for support vector machines. The quality of the obtained reconstructions was evaluated using three image quality indicators: PSNR, ICC, and MSE. When applied to simulated cases and real measurements from the Netrix S.A. laboratory, the classifier demonstrated effective performance, consistently recommending models that produced reconstructions that closely resembled the real objects. Such a classifier can significantly optimize the use of EIT in industrial reactors by increasing the accuracy and efficiency of imaging, resulting in improved energy management and efficiency.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3