Experimental Study on the Effect of Sand and Dust on the Performance of Photovoltaic Modules in Desert Areas

Author:

Liu Xin1,Wang Ningbo1,Zhao Mingzhi1,Hu Xiaoming1

Affiliation:

1. School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

Photovoltaic power generation is one of the most effective measures to reduce greenhouse gas emissions, and the surface of photovoltaic modules in desert areas is mainly affected by sand erosion and cover, which affect power output. Therefore, a wind–sand erosion system was established to simulate the desert wind–sand environment, analyze the influence of dust erosion on the output power of the component, and observe the surface erosion morphology of the component. Then, dust particles of different sizes were selected to cover the surface of the photovoltaic module, and the temperature change and output characteristics of the backplane of the module were studied. The results show that the erosion rate increases with the increase in the erosion angle. When the erosion rate is 25 m/s and 30 m/s, the output power decreases by 9.82%~16.00% and 15.42%~24.46% at different erosion angles, respectively. As the particle size (0.05 mm~0.30 mm) deposited on the surface of the photovoltaic module gradually increases, the open-circuit voltage of the module changes little, and its maximum difference is 0.25 V. Short-circuit current and output power vary greatly; the maximum difference in short-circuit current is about 13.00%, and the maximum difference in output power is about 17.00%. Through our research, this study provides a certain reference for maximizing power generation efficiency and the clean planning of desert photovoltaic power stations.

Funder

the Science and Technology Department of Inner Mongolia Autonomous Region of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3