Predictive Modeling of Renewable Energy Purchase Prices Using Deep Learning Based on Polish Power Grid Data for Small Hybrid PV Microinstallations

Author:

Pikus Michał1ORCID,Wąs Jarosław1ORCID

Affiliation:

1. Department of Applied Computer Science, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

In the quest for sustainable energy solutions, predicting electricity prices for renewable energy sources plays a pivotal role in efficient resource allocation and decision making. This article presents a novel approach to forecasting electricity prices for renewable energy sources using deep learning models, leveraging historical data from the power system operator (PSE). The proposed methodology encompasses data collection, preprocessing, feature engineering, model selection, training, and evaluation. By harnessing the power of recurrent neural networks (RNNs) and other advanced deep learning architectures, the model captures intricate temporal relationships, weather patterns, and demand fluctuations that impact renewable energy prices. The study demonstrates the applicability of this approach through empirical analysis, showcasing its potential to enhance energy market predictions and aid in the transition to more sustainable energy systems. The outcomes underscore the importance of accurate renewable energy price predictions in fostering informed decision making and facilitating the integration of renewable sources into the energy landscape. As governments worldwide prioritize renewable energy adoption, this research contributes to the arsenal of tools driving the evolution towards a cleaner and more resilient energy future.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3