A Novel Dual-Channel Temporal Convolutional Network for Photovoltaic Power Forecasting

Author:

Ren Xiaoying12ORCID,Zhang Fei12,Sun Yongrui2,Liu Yongqian1

Affiliation:

1. School of Renewable Energy, North China Electric Power University, Beijing 100000, China

2. College of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

A large proportion of photovoltaic (PV) power generation is connected to the power grid, and its volatility and stochasticity have significant impacts on the power system. Accurate PV power forecasting is of great significance in optimizing the safe operation of the power grid and power market transactions. In this paper, a novel dual-channel PV power forecasting method based on a temporal convolutional network (TCN) is proposed. The method deeply integrates the PV station feature data with the model computing mechanism through the dual-channel model architecture; utilizes the combination of multihead attention (MHA) and TCN to extract the multidimensional spatio-temporal features between other meteorological variables and the PV power; and utilizes a single TCN to fully extract the temporal constraints of the power sequence elements. The weighted fusion of the dual-channel feature data ultimately yields the ideal forecasting results. The experimental data in this study are from a 26.52 kW PV power plant in central Australia. The experiments were carried out over seven different input window widths, and the two models that currently show superior performance within the field of PV power forecasting: the convolutional neural network (CNN), and the convolutional neural network combined with a long and short-term memory network (CNN_LSTM), are used as the baseline models. The experimental results show that the proposed model and the baseline models both obtained the best forecasting performance over a 1-day input window width, while the proposed model exhibited superior forecasting performance compared to the baseline model. It also shows that designing model architectures that deeply integrate the data input method with the model mechanism has research potential in the field of PV power forecasting.

Funder

National Key Research and Development Program of China

Inner Mongolia Autonomous Region Key R&D and Achievement Transformation Program Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference41 articles.

1. (2023, December 16). Net Zero by 2050–Analysis-IEA. Available online: https://www.iea.org/reports/net-zero-by-2050.

2. Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting;Ren;Appl. Energy,2022

3. Review of photovoltaic power forecasting;Antonanzas;Sol. Energy,2016

4. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization;Ahmed;Renew. Sustain. Energy Rev.,2020

5. Comparison of different physical models for PV power output forecasting;Dolara;Sol. Energy,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3