Lignocellulosic Biomass Valorisation by Coupling Steam Explosion Treatment and Anaerobic Digestion

Author:

Chaib Oumaima1ORCID,Abatzoglou Nicolas1ORCID,Achouri Inès Esma12ORCID

Affiliation:

1. Group of Research on Technologies & Processes (GRTP), Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

2. Canada Research Chair on Process Intensification for Advanced Catalyst and Sustainable Energy, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

Abstract

Lignocellulosic biomass valorisation presents a promising avenue for sustainable and renewable energy production. In this study, the synergistic potential of coupling steam explosion (SE) treatment with anaerobic digestion (AD) was explored to maximize the efficient conversion of lignocellulosic biomass into valuable biogas. The SE process, a cost-effective technique for biomass fractionation, plays a pivotal role in breaking down complex biomass components, rendering them more amenable to subsequent biological treatments. In the present work, we investigated the impact of various SE conditions, including temperature, time, and acid concentration, on the breakdown of lignocellulosic residues. Through the quantification and analysis of sugars and their degradation products, the optimization of steam explosion conditions at lower temperatures and shorter time periods, along with the presence of a lower concentration of acid catalysts, efficiently releases sugars. Maintaining these conditions helps prevent byproducts. The evaluation of the (S/I)vs ratio during anaerobic digestion reveals an optimal 1/2 ratio, maximizing biogas production. This innovative approach demonstrates significant potential for the valorisation of lignocellulosic biomass, contributing to a more sustainable and efficient utilization of renewable resources in the pursuit of clean energy solutions.

Funder

Government of Québec

FRQNT strategic cluster Centre SÈVE

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3