Volcanic Cloud Detection and Retrieval Using Satellite Multisensor Observations

Author:

Romeo Francesco1ORCID,Mereu Luigi23ORCID,Scollo Simona4ORCID,Papa Mario13,Corradini Stefano5ORCID,Merucci Luca5ORCID,Marzano Frank Silvio13ORCID

Affiliation:

1. Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, Sapienza Università di Roma, 00185 Roma, Italy

2. Istituto Nazionale di Geofisica e Vulcanologia, 40128 Bologna, Italy

3. Centre of Excellence CETEMPS, University of L’Aquila, 67100 L’Aquila, Italy

4. Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, 95100 Catania, Italy

5. Istituto Nazionale di Geofisica e Vulcanologia, ONT, 00143 Roma, Italy

Abstract

Satellite microwave (MW) and millimetre-wave (MMW) passive sensors can be used to detect volcanic clouds because of their sensitivity to larger volcanic particles (i.e., size bigger than 20 µm). In this work, we combine the MW-MMW observations with thermal-infrared (TIR) radiometric data from the Low Earth Orbit (LEO) spectroradiometer to have a complete characterisation of volcanic plumes. We describe new physical-statistical methods, which combine machine learning techniques, aimed at detecting and retrieving volcanic clouds of two highly explosive eruptions: the 2014 Kelud and 2015 Calbuco test cases. For the detection procedure, we compare the well-known split-window methods with a machine learning algorithm named random forest (RF). Our work highlights how the machine learning method is suitable to detect volcanic clouds using different spectral signatures without fixing a threshold. Moreover, the RF model allows images to be automatically processed with promising results (90% of the area correctly identified). For the retrieval procedure of the mass of volcanic particles, we consider two methods, one based on the maximum likelihood estimation (MLE) and one using the neural network (NN) architecture. Results show a good comparison of the mass obtained using the MLE and NN methods for all the analysed bands. Summing the MW-MMW and TIR estimates, we obtain the following masses: 1.11 ± 0.40 × 1011 kg (MLE method) and 1.32 ± 0.47 × 1011 kg (NN method) for Kelud; 4.48 ± 1.61 × 1010 kg (MLE method) and 4.32 ± 1.56 × 1010 kg (NN method) for Calbuco. This work shows how machine learning techniques can be an effective tool for volcanic cloud detection and how the synergic use of the TIR and MW-MMW observations can give more accurate estimates of the near-source volcanic clouds.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3