Continuous Intra-Annual Changes of Lake Water Level and Water Storage from 2000 to 2018 on the Tibetan Plateau

Author:

Guo Hengliang1,Nie Bingkang2,Yuan Yonghao2,Yang Hong3,Dai Wenhao2,Wang Xiaolei2ORCID,Qiao Baojin2ORCID

Affiliation:

1. National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450001, China

2. School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, China

3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

Abstract

There is a large amount of lakes on the Tibetan Plateau (TP), which are very sensitive to climate change. Understanding the characteristics and driving mechanisms of lake change are crucial for understanding climate change and the effective use of water resources. Previous studies have mainly focused on inter-annual lake variation, but the continuous and long-term intra-annual variation of lakes on the TP remains unclear. To address this gap, we used the global surface water (GSW) dataset and the Shuttle Radar Topography Mission (SRTM) DEM to estimate the water level and storage changes on the TP. The results indicated that the average annual minimum lake water level (LWLmin) and the average annual maximum lake water level (LWLmax) increased by 3.09 ± 0.18 m (0.16 ± 0.01 m/yr) and 3.69 ± 0.12 m (0.19 ± 0.01 m/yr) from 2000 to 2018, respectively, and the largest change of LWLmin and LWLmax occurred in 2002–2003 (0.45 m) and 2001–2002 (0.39 m), respectively. Meanwhile, the annual minimum lake water storage change (LWSCmin) and annual maximum lake water storage change (LWSCmax) were 125.34 ± 6.79 Gt (6.60 ± 0.36 Gt/yr) and 158.07 ± 4.52 Gt (8.32 ± 0.24 Gt/yr) from 2000 to 2018, and the largest changes of LWSCmin and LWSCmax occurred in the periods of 2002–2003 (17.67 Gt) and 2015–2016 (17.51 Gt), respectively. The average intra-year changes of lake water level (LWLCintra-year) and the average intra-year changes of lake water storage (LWSCintra-year) were 0.98 ± 0.23 m and 40.19 ± 10.67 Gt, respectively, and the largest change in both LWLCintra-year (1.44 m) and LWSCintra-year (62.46 Gt) occurred in 2018. The overall trend of lakes on the TP was that of expansion, where the LWLC and LWSC in the central and northern parts of the TP was much faster than that in other regions, while the lakes in the southern part of the TP were shrinking, with decreasing LWLC and LWSC. Increased precipitation was found to be the primary meteorological factor affecting lake expansion, and while increasing glacial meltwater also had an important influence on the LWSC, the variation of evaporation only had a little influence on lake change.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3