Study of Genetic Variation in Bermuda Grass along Longitudinal and Latitudinal Gradients Using Spectral Reflectance

Author:

Zhang Jingxue1,Han Mengli1,Wang Liwen1,Chen Minghui1,Chen Chen1,Shen Sicong1,Liu Jiangui2,Zhang Chao3ORCID,Shang Jiali2,Yan Xuebing1

Affiliation:

1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China

2. Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada

3. College of Hydraulie Science and Engineering, Yangzhou University, Yangzhou 225000, China

Abstract

Genetic variation among populations within plant species can have huge impact on canopy biochemistry and structure across broad spatial scales. Since canopy spectral reflectance is determined largely by canopy biochemistry and structure, spectral reflectance can be used as a means to capture the variability of th genetic characteristics of plant species. In this study, we used spectral measurements of Bermuda grass [Cynodon dactylon (L.) Pers.] at both the leaf and canopy levels to characterize the variability of plant traits pertinent to phylogeographic variation along the longitudinal and latitudinal gradients. An integration of airborne multispectral and hyperspectral data allows for the exploitation of spectral variations to discriminate between the five different genotypic groups using ANOVA and RF models. We evaluated the spectral variability among high-latitude genotypic groups and other groups along the latitudinal gradients and assessed spectral variability along longitudinal gradients. Spectral difference was observed between genetic groups from the northern regions and those from other regions along the latitudinal gradient, which indicated the usefulness of spectral signatures for discriminating between genetic groups. The canopy spectral reflectance was better suited to discriminate between genotypes of Bermuda grass across multiple scales than leaf spectral data, as assessed using random forest models. The use of spectral reflectance, derived from remote sensing, for studying genetic variability across landscapes is becoming an emerging research topic, with the potential to monitor and forecast phenology, evolution and biodiversity.

Funder

National Natural Science Foundation of China

Graduate Scientific Research Innovation Project in Jiangsu

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3