Spatial–Temporal Pattern Characteristics and Impact Factors of Carbon Emissions in Production–Living–Ecological Spaces in Heilongjiang Province, China

Author:

Guo Rong12,Wu Xiaochen12,Wu Tong12,Dai Chao12

Affiliation:

1. School of Architecture, Harbin Institute of Technology, Harbin 150006, China

2. Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150006, China

Abstract

Under the threat of global climate change, China has proposed a dual carbon goal of peak carbon and carbon neutrality. As the vital carrier for territorial spatial planning, production–living–ecological (PLE) spaces drive carbon emissions and are important to the dual carbon goals. In this study, carbon emissions and sinks of PLE spaces in cities in Heilongjiang Province from 2005 to 2020 were calculated and spatial–temporal changes were analyzed. The carbon emission structure was analyzed in segmentation sectors. The land use changes and socioeconomic factors on carbon emissions were analyzed, and emission reduction strategies were implemented. The results show the following: (1) Carbon emissions from production and living spaces increased yearly. Carbon sinks were smaller than emissions, but capacity was stable. (2) Higher-emission cities were concentrated in southwest Heilongjiang, and carbon emission differences between regions gradually increased. (3) Among carbon emission sectors, agricultural and household made up smaller proportions, while animal husbandry, industrial, transportation, and traffic travel contributed most. Carbon emission structures were transformed by adjusting urban development and industrial structure. (4) For most cities, industrial space was the main emission space, but agricultural production and urban–rural living spaces dominated in some cities. (5) GDP, urbanization rate, and area of city paved roads suppressed emissions in cities with decreased carbon emission grades. The industrial structure and coal consumption inhibited emissions in cities with maintaining and increasing carbon emissions grades.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3