Land Use Optimization Embedding in Ecological Suitability in the Embryonic Urban Agglomeration

Author:

Chen Xidong12,Zhao Ruifeng12,Shi Peiji123,Zhang Lihua1,Yue Xiaoxin4,Han Ziyi12,Wang Jingfa12,Dou Hanmei12

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

2. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Northwest Normal University, Lanzhou 730070, China

3. Gansu Province Land Use and Comprehensive Improvement Engineering Research Center, Lanzhou 730070, China

4. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

Healthy and sustainable urban agglomerations development relies heavily on land use optimization. However, there is insufficient scientific basis and reliable quantitative analysis for land use pattern identification and optimal prediction in embryonic urban agglomeration. Therefore, taking the Lanzhou–Xining (LX) region, a typical primary developing urban agglomeration, as the study area, we first assessed the land ecological suitability (LES). Then, we embedded the LES evaluation results in the land optimization process and constructed the MCR-MOP- Dyna-CLUE model framework, simulating and optimizing land use patterns for the year 2035 under ecological optimization and business as usual scenarios, which aimed to explore a sustainable land use pattern for embryonic urban agglomerations. The results indicated that the ecological optimization scenario based on LES had a more rational land use pattern. It appropriately controlled the expansion rate of construction land and effectively alleviated the problems of construction land encroaching on farming land and ecological land. Meanwhile, the ecosystem services increased in value based on adequately addressing the need for food security and economic development. Compared to the business as usual scenario, the construction land under the ecological optimization scenario was 19,622.69 ha less, and the cultivated land was 32,103.29 ha more. Moreover, the ecological benefit and the economic benefit increased by 187,490.4595 million yuan and 151,808,605.1 million yuan from 2020 to 2035, respectively, under the ecological optimization scenario. Our research is of great value for making decisions on sustainable land use and land resource management in initial developing agglomerations.

Funder

National Natural Science Foundation of China

Science and Technology Plan of Gansu Province

Youth Teacher Scientific Capability Promoting Project of Northwest Normal University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3