The MADAG Strategy for Fault Location Techniques

Author:

Wu Shih-DA,Lo Jung-HuaORCID

Abstract

Spectrum-based fault localization (SBFL), which utilizes spectrum information of test cases to calculate the suspiciousness of each statement in a program, can reduce developers’ effort. However, applying redundant test cases from a test suite to fault localization incurs a heavy burden, especially in a restricted resource environment, and it is expensive and infeasible to inspect the results of each test input. Prioritizing/selecting appropriate test cases is important to enable the practical application of the SBFL technique. In addition, we must ensure that applying the selected tests to SBFL can achieve approximately the effectiveness of fault localization with whole tests. This paper presents a test case prioritization/selection strategy, namely the Minimal Aggregate of the Diversity of All Groups (MADAG). The MADAG strategy prioritizes/selects test cases using information on the diversity of the execution trace of each test case. We implemented and applied the MADAG strategy to 233 faulty versions of the Siemens and UNIX programs from the Software-artifact Infrastructure Repository. The experiments show that (1) the MADAG strategy uses only 8.99 and 14.27 test cases, with an average of 18, from the Siemens and UNIX test suites, respectively, and the SBFL technique has approximate effectiveness for fault localization on all test cases and outperforms the previous best test case prioritization method; (2) we verify that applying whole tests from the test suite may not achieve the better effectiveness in fault localization compared with the tests selected by MADAG strategy.

Funder

National Science and Technology Council (NSTC) of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3