Abstract
Rosacea is a chronic inflammatory skin disorder that causes visible blood vessels and redness on the nose, chin, cheeks, and forehead. However, visual assessment, the current standard method used to identify rosacea, is often subjective among clinicians and results in high variation. Recent advances in artificial intelligence have allowed for the effective detection of various skin diseases with high accuracy and consistency. In this study, we develop a new methodology, coined “five accurate CNNs-based evaluation system (FACES)”, to identify and classify rosacea more efficiently. First, 19 CNN-based models that have been widely used for image classification were trained and tested via training and validation data sets. Next, the five best performing models were selected based on accuracy, which served as a weight value for FACES. At the same time, we also applied a majority rule to five selected models to detect rosacea. The results exhibited that the performance of FACES was superior to that of the five individual CNN-based models and the majority rule in terms of accuracy, sensitivity, specificity, and precision. In particular, the accuracy and sensitivity of FACES were the highest, and the specificity and precision were higher than most of the individual models. To improve the performance of our system, future studies must consider patient details, such as age, gender, and race, and perform comparison tests between our model system and clinicians.
Funder
National Institute on Aging of the National Institutes of Health
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference42 articles.
1. Recent Advances in Understanding and Managing Rosacea;Buddenkotte;F1000Research,2018
2. Rosacea: Part I. Introduction, Categorization, Histology, Pathogenesis, and Risk Factors;Two;J. Am. Acad. Dermatol.,2015
3. Rosacea: Epidemiology, Pathogenesis, and Treatment;Rainer;Dermato-Endocrinology,2017
4. Epidemiological Features of Rosacea in Changsha, China: A Population-Based, Cross-Sectional Study;Li;J. Dermatol.,2020
5. The Nosology of Rosacea;Odom;Cutis,2004
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献