Effectiveness of an Entropy-Based Approach for Detecting Low- and High-Rate DDoS Attacks against the SDN Controller: Experimental Analysis

Author:

Aladaileh Mohammad AdnanORCID,Anbar MohammedORCID,Hintaw Ahmed J.ORCID,Hasbullah Iznan H.ORCID,Bahashwan Abdullah AhmedORCID,Al-Amiedy Taief AlaaORCID,Ibrahim Dyala R.

Abstract

Software-defined networking (SDN) is a unique network architecture isolating the network control plane from the data plane, offering programmable elastic features that allow network operators to monitor their networks and efficiently manage them. However, the new technology is security deficient. A DDoS attack is one of the common attacks that threaten SDN controllers, leading to the degradation or even collapse of the entire SDN network. Entropy-based approaches and their variants are considered the most efficient approaches to detecting DDoS attacks on SDN controllers. Therefore, this work analyzes the feasibility and impacts of an entropy-based DDoS attack detection approach for detecting low-rate and high-rate DDoS attacks against the controller, measured in terms of detection rate (DR) and false-positive rate (FPR), triggered by a single or multiple host attacks targeting a single or multiple victims. Eight simulation scenarios, representing low and high DDoS attack traffic rates on the controller, have been used to evaluate an entropy-based DDoS attack detection approach. The experimental results reveal that the entropy-based approach enhances the average DR for detecting high-rate DDoS attack traffic compared with low-rate DDoS attack traffic by 6.25%, 20.26%, 6.74%, and 8.81%. In addition, it reduces the average FPRs for detecting a high DDoS attack traffic rate compared with a low DDoS attack traffic rate by 67.68%, 77.54%, 66.94%, and 64.81.

Funder

Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3