Improving the Coatability of Zn–Mg–Al Alloy on Steel Substrate by the Surface Pretreatment of SnCl2-Added Zinc Ammonium Chloride

Author:

Kim Ki-yeon,Grandhi Srinivasulu,Oh Min-SukORCID

Abstract

The applicability of galvanized products in various industries has increased the demand for highly corrosion-resistant coatings to counter harsh environments. Among these, Zn–Mg–Al ternary alloy coatings have excellent corrosion resistance, resulting in their commercialization and industrial demand. To increase the diversification of their products, the ideal flux composition in these coatings should be optimized. In this study, we investigated the effects of conventional flux (ZnCl2:NH4Cl) in the hot-dip galvanization of Zn–Mg–Al ternary alloy coatings. Additionally, we developed a new flux to improve the coating properties of Zn–Mg–Al ternary alloy coatings on steel sheets. During hot dipping, SnCl2 on the steel substrate decomposed faster than conventional flux, thereby eliminating the AlCl3 residues in the coating and surface defects. The thermogravimetric-differential thermal analysis studies unveiled the mechanisms for improved coatings. The thermodynamic calculations confirmed the spontaneous substitution owing to the presence of SnCl2 in the flux. Therefore, the developed and optimized flux enhanced the adhesion of the alloy coating.

Funder

Ministry of Science and ICT, South Korea

Ministry of Trade, Industry and Energy

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3