Evidence for Mild Diagenesis in Archaeological Human Bones from the Fewet Necropolis (SW Libya): New Insights and Implications from ATR–FTIR Spectroscopy

Author:

Castorina Francesca,Masi Umberto,Giorgini ElisabettaORCID,Mori LuciaORCID,Tafuri Mary Anne,Notarstefano ValentinaORCID

Abstract

Bones offer a great amount of information on ancient populations regarding both their lifestyle habits and the influence of the living area. Bones are composed by an inorganic component, i.e., carbonated hydroxyapatite (Ca10[(PO4)6−x(CO3)x](OH)2), and an organic matrix (mainly proteins and collagen). After death, bones are subjected to diagenetic processes, with changes in structure, morphology, and chemical composition. All these modifications strictly depend on several factors, including the nearby environment, the climate, and the burial modality. Hence, a precise knowledge of the diagenetic processes affecting bones after death is mandatory. In this study, archeological human bones from the Garamantian necropolis of Fewet (Libyan Sahara) were analyzed by ATR–FTIR spectroscopy to elucidate the role of the burial location and modality, as well as the highly arid environment in the diagenesis rate. Several spectral parameters related to structural and chemical features of the organic and mineral components (i.e., AmideI/PO4, C/P, MM, FWHM603, and IRSF indexes) were statistically analyzed. Spectral data were compared with those from modern ruminants from the same site to evaluate a possible time-dependent correlation between the chemical composition and the diagenetic processes. A mild diagenesis was found in all human bones, even though it had a variable degree depending on the burial location.

Funder

Università di Roma “La Sapienza”

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3