State-of-the-Art on Technological Developments and Adaptability of Prefabricated Industrial Steel Buildings

Author:

Khan Kashan,Chen Zhihua,Liu Jiadi,Javed Khadija

Abstract

Compared to traditional onsite steel construction, prefabricated industrial steel construction (PFISC) saves time, money, and resources. It results in sustainable steel structures that use fewer resources and are better for the environment. Despite their advantages, the private sector favors creating high-rise buildings in an old-fashioned way. In order to encourage the adaptability of prefabricated industrial steel buildings (PFISBs) in high-rise structures, this study critically evaluates the adaptable solutions offered in the literature on the recent developments, structural performances, present difficulties, and future potential. In mid-rise and low-rise structures, PFISC is frequently used. In research and case studies, PFISBs have proven to perform admirably under various adverse conditions, including in the event of an earthquake, wind, blast, impact, fire, collapse, and long-term sustained loads. The use of potential research solutions, the “Top-down” strategy, and the resolving of problems such as the structural-based design guidelines, column stability, discontinuous vertical and horizontal diaphragms, cluster columns and beams effect, damage-free and innovative inter- and intra-modular connections, high strength-to-weight modules, numerical simulation, and transportation will help PFISBs to become more widely accepted in high-rise structures. Compared to other materials, steel has recently demonstrated great promise for the construction of PFISBs. Additionally, China plans to increase their PFISC to 30% by 2026, Australia to 15% by 2025, and North America to over 5% by 2023, proving that it is a reasonable response to future urbanization concerns.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference186 articles.

1. Comparative analysis of modular construction practices in mainland China, Hong Kong and Singapore;Xu;J. Clean. Prod.,2019

2. Making a case for offsite construction in China;Arif;Eng. Constr. Arch. Manag.,2010

3. Numerical study on the effects of diaphragm stiffness and strength on the seismic response of multi-story modular buildings;Srisangeerthanan;Eng. Struct.,2018

4. Collapse capacity of modular steel buildings subject to module loss scenarios: The role of inter-module connections;Alembagheri;Eng. Struct.,2020

5. Monash University (2017). Modular Construction Codes Board, Handbook for the Design of Modular Structures, Monash University.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3