A Convolutional Neural Network-Based Broad Incremental Learning Filter for Attenuating Physiological Tremors in Telerobot Systems

Author:

Lai Guanyu,Liu Weizhen,Yang WeijunORCID,Zhang Yun

Abstract

While master-slave teleoperated robotic systems have extensive applications in practice, the physiological tremors can easily affect the control accuracy and even destroy the stability of the closed-loop control systems during operation. Hence, the development of some effective approaches for counteracting physiological tremors is of both theoretical and practical importance. In this paper, a broad learning network-based filter integrating a deep learning network and modified incremental learning algorithms is proposed to reconstruct and compensate for tremor signals. To strengthen the recognition of correlations between different moments, the lateral connectivity structure is adopted to obtain multi-scale feature maps. Each feature window is obtained from multi-scale feature maps generated by the convolutional neural network, which has an advantage that makes the feature nodes fuse the feature information of long time series and short time series by the lateral connection. The broad learning network is a unique construction, which only needs to obtain the input and the output to conveniently calculate the connection weights by the pseudo-inverse without involving backpropagation. It is known that the relation between the data X and the label Y can be represented as XW=Y, and the solution W can be obtained by the pseudo-inverse W=X+Y. In addition, to guarantee the ill-posed problem, a ridge regression algorithm is used for the pseudo-inverse calculation. The effectiveness of our raised network architecture is illustrated by comparative simulation and experiment results.

Funder

the Tertiary Education Scientific research project of Guangzhou Municipal Education Bureau

the Science and Technology Program of Guangzhou, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tremor Stabilization for Sculpting Assistance in Virtual Reality;2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW);2024-03-16

2. Adaptive Robust RBF-NN Nonsingular Terminal Sliding Mode Control Scheme for Application to Snake Robot’s Head for Image Stabilization;Applied Sciences;2023-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3