Behavior of Confined Headed Bar Connection for Precast Reinforced Concrete Member Assembly

Author:

Liang Zihao,Gong Chao,Liang Weiqiao,Zhang Sumei,Li Xiaozhong

Abstract

The mechanical performance of precast RC structures relies on the connections, especially the connections of steel bars, between precast RC members. Grouted sleeve splices and grouted spiral-confined overlap connections are widely used in engineering practice in China. Both of these two connection splices require on-site grouting. The process is concealed and invisible, leading to difficult on-site inspection. The unseen defects cause a challenge for detection and repair, which may impair the reliability of precast RC members’ behavior. This paper presents an RC member assembly connection with visible on-site construction quality-monitoring. The proposed confined headed-bar connection (CHBC) consists of two overlapping headed bars and confinement stirrup. With CHBC, the potential construction defects are diminished, and subsequently the construction quality as well as the reliability is upgraded. Experimental investigation on 18 CHBC specimens was carried out; the main parameters considered were overlap length and bar-head size. The failure modes, bearing capacity, stirrup strain development and bond versus slip response are studied. Working mechanism of CHBC is investigated in terms of bond behavior force and concrete compression force at head experimentally and numerically; distributive relationship of these two forces is revealed. The results show that for Φ12 reinforcement, a 90 mm overlap length under test parameters is adequate to reach headed bar ultimate strength in CHBC. Finally, a CHBC-bearing capacity prediction method is suggested based on the superposition method and strut-and-tie model theory.

Funder

China Minmetals Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3