Mitigation of Non-Steroidal Anti-Inflammatory and Antiretroviral Drugs as Environmental Pollutants by Adsorption Using Nanomaterials as Viable Solution—A Critical Review

Author:

Sigonya SisonkeORCID,Mokhothu Thabang HendricaORCID,Mokhena Teboho Clement,Makhanya Talent Raymond

Abstract

Traces of pharmaceuticals of various classes have been reported as emerging pollutants, and they continue to be detected in aquatic environments. The steady growth of pharmaceuticals in water, as well as the related negative consequences, has made it a major priority to discover effective ways for their removal from water. Various strategies have been used in the past in order to address this issue. Recently, nanotechnology has emerged as a topic of intense interest for this purpose, and different technologies for removing pharmaceuticals from water have been devised and implemented, such as photolysis, nanofiltration, reverse osmosis, and oxidation. Nanotechnological approaches including adsorption and degradation have been comprehensively examined in this paper, along with the applications and limits, in which various types of nanoparticles, nanocomposites, and nanomembranes have played important roles in removing these pharmaceutical pollutants. However, this review focuses on the most often used method, adsorption, as it is regarded as the superior approach due to its low cost, efficiency, and ease of application. Adsorption kinetic models are explained to evaluate the effectiveness of nano-adsorbents in evaluating mass transfer processes in terms of how much can be adsorbed by each method. Several robust metals, metal oxides, and functionalized magnetic nanoparticles have been highlighted, classified, and compared for the removal of pharmaceuticals, such as non-steroidal, anti-inflammatory and antiretroviral drugs, from water. Additionally, current research difficulties and prospects have been highlighted.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3