Experimental Study on Freezing Front Model of Alpine Tunnel under Wind Field

Author:

Li Zhiqiang,Zhao Jinpeng,Liu Lulu,Li Zhe

Abstract

In order to study the freezing front characteristics of alpine tunnels under the condition of wind flow field and relying on the Osaka Mountain tunnel in Qinghai Province, the physical model test of an alpine tunnel was built. By using the Surfer software combined with the laboratory test data, the radial and longitudinal temperature variation trends of the tunnel were obtained, and the overall temperature vector graph of the tunnel was simulated; the radial and longitudinal evolutionary laws of a freezing front in an alpine tunnel under airflow conditions were systematically analyzed, and the radial and longitudinal governing equations of a freezing front in the tunnel model under airflow conditions were proposed. The results show that: With the decrease of the test air temperature, the thermonuclear area in the surrounding rock gradually shrinks, the frozen area of surrounding rock at the bottom of the arch gradually increases, and the frozen area of surrounding rock at the top of the arch gradually expands to the interior of the mountain. The influence degree of ventilation on the longitudinal and radial temperature distribution of the tunnel is obvious, and the greater the wind speed, the greater the influence degree. In particular, the fluctuation range of the longitudinal temperature distribution of the tunnel is more extensive under the influence of ventilation. The freezing front distance in the inverted arch area is the largest, and the expansion distance of the freezing front in the wall foot area is obviously higher than that in the vault; the variation of the longitudinal freezing front at different positions of the tunnel shows parabolic attenuation and with an increase in tunnel depth, the trend of freezing front gradually eases and becomes stable and disappears; the three radial regions of the freezing front and the longitudinal quadratic parabola governing equations can predict the specific distribution characteristics of the freezing front at different depths of the tunnel.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Evaluation of calculation models for the thermal conductivity of soils;Zhang;Int. Commun. Heat Mass Transf.,2018

2. Field measurement of air temperature in a cold region tunnel in northeast China;Zhao;Cold Reg. Sci. Technol.,2020

3. Road tunnels in Japan: Deterioration and countermeasures;Inokuma;Tunn. Undergr. Space Technol.,1996

4. Okada, K., and Fujii, T. (1997). Ground Freezing 97: Frost Action in Soils, A.A. Balkema.

5. Insulation against ice railroad tunnels;Sandegren;Transp. Res. Rec.,1987

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3