Blockchain Secured Dynamic Machine Learning Pipeline for Manufacturing

Author:

Stodt FatemehORCID,Stodt JanORCID,Reich ChristophORCID

Abstract

ML-based applications already play an important role in factories in areas such as visual quality inspection, process optimization, and maintenance prediction and will become even more important in the future. For ML to be used in an industrial setting in a safe and effective way, the different steps needed to use ML must be put together in an ML pipeline. The development of ML pipelines is usually conducted by several and changing external stakeholders because they are very complex constructs, and confidence in their work is not always clear. Thus, end-to-end trust in the ML pipeline is not granted automatically. This is because the components and processes in ML pipelines are not transparent. This can also cause problems with certification in areas where safety is very important, such as the medical field, where procedures and their results must be recorded in detail. In addition, there are security challenges, such as attacks on the model and the ML pipeline, that are difficult to detect. This paper provides an overview of ML security challenges that can arise in production environments and presents a framework on how to address data security and transparency in ML pipelines. The framework is presented using visual quality inspection as an example. The presented framework provides: (a) a tamper-proof data history, which achieves accountability and supports quality audits; (b) an increase in trust by protocol for the used ML pipeline, by rating the experts and entities involved in the ML pipeline and certifying legitimacy for participation; and (c) certification of the pipeline infrastructure, the ML model, data collection, and labelling. After describing the details of the new approach, the mitigation of the previously described security attacks will be demonstrated, and a conclusion will be drawn.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse;Equilibrium. Quarterly Journal of Economics and Economic Policy;2024-06-30

2. A bibliometric analysis of blockchain development in industrial digital transformation using CiteSpace;Peer-to-Peer Networking and Applications;2024-01-20

3. Research on the Application of Data Mining Algorithm in the Detection of Gas Pipeline Outside;Lecture Notes in Electrical Engineering;2024

4. Enhancing Trust and Reliability in AI and ML: Assessing Blockchain's Potential to Ensure Data Integrity and Security;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

5. Trust Management System for Hybrid Industrial Blockchains;2023 IEEE 21st International Conference on Industrial Informatics (INDIN);2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3