Parameter Optimization and Tuning Methodology for a Scalable E-Bus Fleet Simulation Framework: Verification Using Real-World Data from Case Studies

Author:

Hasan Mohammed MahediORCID,Avramis Nikos,Ranta Mikaela,El Baghdadi MohamedORCID,Hegazy OmarORCID

Abstract

This study presents the optimization and tuning of a simulation framework to improve its simulation accuracy while evaluating the energy utilization of electric buses under various mission scenarios. The simulation framework was developed using the low fidelity (Lo-Fi) model of the forward-facing electric bus (e-bus) powertrain to achieve the fast simulation speeds necessary for real-time fleet simulations. The measurement data required to verify the proper tuning of the simulation framework is provided by the bus original equipment manufacturers (OEMs) and taken from the various demonstrations of 12 m and 18 m buses in the cities of Barcelona, Gothenburg, and Osnabruck. We investigate the different methodologies applied for the tuning process, including empirical and optimization. In the empirical methodology, the standard driving cycles that have been used in previous studies to simulate various use case (UC) scenarios are replaced with actual driving cycles derived from measurement data from buses traversing their respective routes. The key outputs, including the energy requirements, total cost of ownership (TCO), and impact on the grid are statistically compared. In the optimization scenario, the assumptions for the various vehicle and mission parameters are tuned to increase the correlation between the simulation and measurement outputs (the battery SoC profile), for the given scenario input (the velocity profile). Improved simple optimization (iSOPT) was used to provide a superfast optimization process to tune the passenger load in the bus, cabin setpoint temperature, battery’s age as relative capacity degradation (RCD), SoC cutoff point between constant current (CC) and constant voltage charging (CV), charge decay factor used in CV charging, charging power, and cutoff in initial velocity during braking for which regenerative braking is activated.

Funder

European Commission—Innovation and Networks Executive Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast charging electric buses in Maribor: a comparative analysis of simulation and real-world results;The 12th International Conference ENVIRONMENTAL ENGINEERING 12th ICEE SELECTED PAPERS;2023-10-23

2. Electrification of Smart Cities;Applied Sciences;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3