Probability Distributions of Asphalt Pavement Responses and Performance under Random Moving Loads and Pavement Temperature

Author:

Ma Xianyong,Shangguan Lingxiao,Si Chundi

Abstract

Asphalt pavements are damaged by traffic load repetitions. Conventionally, the allowed number of load repetitions until pavement failure is calculated based on empirical transfer functions from deterministic pavement mechanical responses to performance. However, the mechanical responses and damage to the pavement are uncertain under a random realistic traffic load and pavement temperature. Therefore, the non-deterministic problem—that is, the probability distributions of asphalt pavement responses and performance under random moving loads and pavement temperatures—was investigated in this study. Random factors include the load pressure, vehicle wandering, speed, and temperature inside the asphalt layer. A combination of the response surface and first-order reliability methodologies was recommended to calculate the probability of mechanical responses at any point within the pavement, for reasons of computational efficiency. The accuracy of this method was verified by a Monte-Carlo simulation. Then, the effects of the mean values and standard deviations of the random factors on the probability distributions of the mechanical responses were discussed. Finally, probability distributions of pavement performance (i.e., probability density distributions of cumulative damage for fatigue failure and rutting after repeated random loads) were calculated using transfer functions and the probability distributions of the mechanical responses; thereby, the failure probability of the pavement after a given number of load repetitions was obtained. The results show that the previous deterministic analysis could not fully reflect the random characteristics of pavement mechanical responses under realistic random moving loads, and the mean values and standard deviations of the random factors have significant effects on the probability distributions of mechanical responses and performance. The failure probability of the pavement after a given number of load repetitions can be used as a guide to reliability-based pavement design. This study on the probability distributions of asphalt pavement responses and performance exhibits the potential to understand pavement behavior and could be beneficial as a complement during reliability-based pavement design.

Funder

State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference17 articles.

1. Near-Surface Pavement Failure under Multiaxial Stress State in Thick Asphalt Pavement;Wang;Transp. Res. Rec.,2010

2. Evaluation of Surface-Related Pavement Damage due to Tire Braking;Wang;Road Mater. Pavement Des.,2010

3. Effect of Surface Friction on Tire-Pavement Contact Stresses during Vehicle Maneuvering;Wang;J. Eng. Mech.,2014

4. ARA (Applied Research Associates) (2004). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, National Cooperative Highway Research Program. Final Rep. 1-37A.

5. Huang, Y. (2004). Pavement Analysis and Design, Prentice Hall. [2nd ed.].

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3