A Novel Combination Method of a Convolutional Neural Network and Energy Operators for the Detection of Change-Points in Electromyographic Signals

Author:

Wang Shenglin,Zhu Shifan,Shang Zhen

Abstract

Currently, neural network algorithms based on time-domain features are used for change-point detection problems, and they have proven to be effective. However, due to the instability of human biosignals, establishing a training dataset with labels is difficult. For supervised learning methods, wherein parameters are updated on a small sample set through a feed-forward mechanism, it is difficult to ascertain the degree to which the performance of the trained neural network corresponds to the overfitting of the dataset upon which the network was trained. To this end, this paper attempted to directly replace the parameters in the convolutional neural network that need to be updated by training. A method based on the combination of the Teager–Kaiser energy operator (TKEO) and the convolutional neural network is proposed. We tested the proposed method on simulated EMG data with different signal-to-noise ratios and real data with labels, respectively. Compared with multiple detection methods, the proposed method had significant advantages in terms of reliability, accuracy, and computational speed. Furthermore, the proposed method does not require any prior knowledge about the signal, lending itself to be flexible and adaptable to any application. It may be a promising alternative to solving change-point detection problems.

Funder

University-Industry Collaborative Education Program of Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The assessment method of lip closure ability based on sEMG nonlinear onset detection algorithms;Biomedical Engineering / Biomedizinische Technik;2024-08-08

2. An Adaptive Two-Step Method for Voluntary Muscle Activity Detection Using sEMG Signals with False Background Spikes;2024 10th International Conference on Electrical Engineering, Control and Robotics (EECR);2024-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3