Field Characterization of Dynamic Response of Geocell-Reinforced Aeolian Sand Subgrade under Live Traffic

Author:

Gao Bin,Liu XuejunORCID,Liu Jie,Song Ling,Shi Yu,Yang Ya

Abstract

In desert regions, aeolian sand is abundant, but it is not suitable to be used directly as the upper roadbed filler for highways. Generally, gravelly soil is mined around the desert as upper roadbed fill, resulting in high engineering expenses for road construction in the desert hinterland. Geocells have a significant reinforcing effect on aeolian sand. However, in the completed desert highway, the dynamic performance of geocell-reinforced aeolian sand as an upper layer of roadbed fill has not been studied. Using a field test method, the dynamic performance of geocell-reinforced aeolian sand as an upper roadbed fill is examined. The results show that the majority of the frequency distribution of road vibration is within 30 Hz. In the horizontal direction, the actual vibration amplitude decay on the side of geocell-reinforced aeolian sand is slower but smoother than on the side of gravelly soils. In vibration velocity, the work area depth of the geocell-reinforced aeolian sand side of the roadbed is less than that of the gravelly soil side. The maximum difference can reach 0.55 m. As far as vibration velocity is concerned, the 30 cm gravelly soils can be substituted with 15 cm geocell-reinforced aeolian sands as the upper roadbed. In summary, the dynamic attenuation characteristics of geocell-reinforced aeolian sand are superior to gravelly soils. The research results provide a reference for the design of the desert highway subgrade.

Funder

Xinjiang Transport Planning Survey and Design Institute Co. Ltd

CSXEC Xinjiang Construction & Engineering (Group) Co. Ltd

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3