Magnetic Vortex Phase Diagram for a Non-Optimized CaKFe4As4 Superconductor Presenting a Wide Vortex Liquid Region and an Ultra-High Upper Critical Field

Author:

Galluzzi ArmandoORCID,Leo AntonioORCID,Masi AndreaORCID,Varsano Francesca,Nigro AngelaORCID,Grimaldi GaiaORCID,Polichetti MassimilianoORCID

Abstract

To draw a complete vortex phase diagram for a CaKFe4As4 polycrystalline iron-based superconductor, different kinds of magnetic measurements have been performed focusing on the critical parameters of the sample. Firstly, magnetic moment versus field measurements m(H) were performed at low fields in order to evaluate the lower critical field Hc1. After that, by performing relaxation measurements m(t), a field crossover Hcross was detected in the framework of a strong pinning regime. The irreversibility field Hirr as a function of the temperature curve was then drawn by plotting the critical current densities Jc versus the field for temperatures near Tc. Jc(H) has demonstrated a second magnetization peak effect phenomenon, and the second peak field Hsp has been identified and plotted as a function of temperature, providing information about an elastic to plastic transition in the vortex lattice. Finally, the upper critical field Hc2 as a function of the temperature has been obtained. Hc1, Hcross, Hsp, Hirr, Hc2 have been fitted and used for drawing the complete vortex phase diagram of the sample. It can be helpful for the understanding of the applicative ranges in the field and temperature of the materials with not-optimized fabrication characteristics, as usually is found in superconducting wires and cables for power applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3