Relative Pose Estimation between Image Object and ShapeNet CAD Model for Automatic 4-DoF Annotation

Author:

Park Soon-YongORCID,Son Chang-MinORCID,Jeong Won-Jae,Park Sieun

Abstract

Estimating the three-dimensional (3D) pose of real objects using only a single RGB image is an interesting and difficult topic. This study proposes a new pipeline to estimate and represent the pose of an object in an RGB image only with the 4-DoF annotation to a matching CAD model. The proposed method retrieves CAD candidates from the ShapeNet dataset and utilizes the pose-constrained 2D renderings of the candidates to find the best matching CAD model. The pose estimation pipeline consists of several steps of learned networks followed by image similarity measurements. First, from a single RGB image, the category and the object region are determined and segmented. Second, the 3-DoF rotational pose of the object is estimated by a learned pose-contrast network only using the segmented object region. Thus, 2D rendering images of CAD candidates are generated based on the rotational pose result. Finally, an image similarity measurement is performed to find the best matching CAD model and to determine the 1-DoF focal length of the camera to align the model with the object. Conventional pose estimation methods employ the 9-DoF pose parameters due to the unknown scale of both image object and CAD model. However, this study shows that only 4-DoF annotation parameters between real object and CAD model is enough to facilitates the projection of the CAD model to the RGB space for image-graphic applications such as Extended Reality. In the experiments, performance of the proposed method is analyzed by using ground truth and comparing with a triplet-loss learning method.

Funder

Korea government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3