Motorway Traffic Emissions Estimation through Stochastic Fundamental Diagram

Author:

Gemma Andrea1ORCID,Giannattasio Orlando1ORCID,Mannini Livia1ORCID

Affiliation:

1. Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy

Abstract

Travel time, or, more generally, level of service, has always been considered the main parameter with which to design roads, particularly in extra-urban areas where geometries and policies, such as speed limits, play a key role in the performance achieved. Unfortunately, this type of approach does not consider the impact on emissions that is obtained when only performance-based goals are pursued. The paper deals with the analysis of the impact on emissions and fuel consumption under different traffic conditions, and we present a new methodology for emission estimation based on the stochastic formulation of the fundamental diagram in a highway environment. The proposed methodology estimates the emissions using a stochastic adaptation of the CORINAIR methodology based on COPERT software on both specific vehicle types and the average Italian vehicle fleet. As expected, due to the convexity of the emission function, accounting for speed dispersion leads to an increase in energy consumption and emissions. Tests show that the stochastic component can lead to an increase in the emission estimation up to 5.5% and, therefore, it should be considered. The methodology has been applied by means of real trajectories, and the results of the application show that performance optimization strategies can contrast with sustainability and emission reduction policies. Results show that for some vehicular classes, emissions or fuel consumption are highly dependent on speed, with different proportionalities. In all cases, the minimum consumption is obtained at speeds ranging from 70 to 90 km/h. The analysis of the curves shows that an increase in speeds, even to reach low speeds, generally leads to an increase in energy consumption and emissions per kilometer traveled and, therefore, is independent of the decrease in travel time.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3