The Influence of Surface Radiation on the Passive Cooling of a Heat-Generating Element

Author:

Miroshnichenko Igor,Sheremet Mikhail,Mohamad Abdulmajeed

Abstract

Low-power electronic devices are suitably cooled by thermogravitational convection and radiation. The use of modern methods of computational mechanics makes it possible to develop efficient passive cooling systems. The present work deals with the numerical study of radiative-convective heat transfer in enclosure with a heat-generating source such as an electronic chip. The governing unsteady Reynolds-averaged Navier–Stokes (URANS) equations were solved using the finite difference method. Numerical results for the stream function–vorticity formulation are shown in the form of isotherm and streamline plots and average Nusselt numbers. The influence of the relevant parameters such as the Ostrogradsky number, surface emissivity, and the Rayleigh number on fluid flow characteristics and thermal transmission are investigated in detail. The comparative assessment clearly emphasizes the effect of surface radiation on the overall energy balance and leads to change the mean temperature inside the heat generating element. The results of the present study can be applied to the design of passive cooling systems.

Funder

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3