DOA Estimation in Non-Uniform Noise Based on Subspace Maximum Likelihood Using MPSO

Author:

Hung Jui-ChungORCID

Abstract

In general, the performance of a direction of arrival (DOA) estimator may decay under a non-uniform noise and low signal-to-noise ratio (SNR) environment. In this paper, a memetic particle swarm optimization (MPSO) algorithm combined with a noise variance estimator is proposed, in order to address this issue. The MPSO incorporates re-estimation of the noise variance and iterated local search algorithms into the particle swarm optimization (PSO) algorithm, resulting in higher efficiency and a reduction in non-uniform noise effects under a low SNR. The MPSO procedure is as follows: PSO is initially utilized to evaluate the signal DOA using a subspace maximum-likelihood (SML) method. Next, the best position of the swarm to estimate the noise variance is determined and the iterated local search algorithm to reduce the non-uniform noise effect is built. The proposed method uses the SML criterion to rebuild the noise variance for the iterated local search algorithm, in order to reduce non-uniform noise effects. Simulation experiments confirm that the DOA estimation methods are valid in a high SNR environment, but in a low SNR and non-uniform noise environment, the performance becomes poor because of the confusion between noise and signal sources. The proposed method incorporates the re-estimation of noise variance and an iterated local search algorithm in the PSO. This method is effectively improved by the ability to reduce estimation deviation in low SNR and non-uniform environments.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3