Investigation on the Air Permeability and Pore Structure of Concrete Subjected to Carbonation under Compressive Stress

Author:

Zhang ChengORCID,Shi XinyuORCID,Wang LingORCID,Yao Yan

Abstract

Concrete structures have to withstand the combined effects of external load and environmental factors. Therefore, it is meaningful to study the durability of concrete under compression and carbonation. The air permeability coefficient (kAu) and pore structure of concrete under uniaxial compression and carbonation were measured by the Autoclam method and mercury intrusion porosimetry (MIP). The Autoclam test results showed that the concrete kAu changed in a concave parabolic manner with the compressive stress level, and the inflection point of the stress level was 45%. The MIP results showed that the characteristic pore structural parameters (porosity, average pore diameter, median pore diameter by area, and median pore diameter by volume) first decreased and then increased with the stress level change. The change in concrete microstructure was a result of the combined effect of pore filling, decalcification, and densification, as well as the split effect. The key pore structural parameters affecting kAu were confirmed using gray relational analysis (GRA). The top three parameters with the highest correlation with the carbonated concrete kAu were porosity (gray relational grade γi = 0.789), median pore diameter by volume (γi = 0.763), and proportion of transition pore volume (γi = 0.827). Furthermore, the regression analysis showed a good linear relation between kAu and the important pore structural parameters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3