Investigating Machine Learning Techniques for Predicting the Process Characteristics of Stencil Printing

Author:

Martinek Péter,Illés BalázsORCID,Codreanu Norocel,Krammer Oliver

Abstract

Stencil printing is the most crucial process in reflow soldering for the mass assembly of electronic circuits. This paper investigates different machine learning-based methods to predict the essential process characteristics of stencil printing: the area, thickness, and volume of deposited solder paste. The training dataset was obtained experimentally by varying the printing speed (from 20 to 120 mm/s), the size (area ratio from 0.35 to 1.7) of stencil apertures, and the particle size (characterized by a log-normal distribution) in the solder paste. Various machine learning-based methods were assessed; ANFIS–adaptive neuro-fuzzy inference systems; ANN artificial neural networks (with different learning methods); boosted trees, regression trees, SVM–support vector machines. Each method was optimized and fine-tuned with hyperparameter optimization, and the overfitting phenomenon was also prevented with cross-validation. The regression tree was the best performing approach for modelling the stencil printing, while ANN with the Bayesian regularization learning method was only slightly worse. The presented methodology for fine-tuning, parameter optimization, and the comparison of different machine learning-based methods can easily be adapted to any application field in electronics manufacturing.

Funder

This work was partially supported by the National Research Development and Innovation Office - Hungary

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3