Properties of AgSnO2 Contact Materials Doped with Different Concentrations of Cr

Author:

Wang Jingqin,Xu JingtingORCID,Zhu Yancai,Hu Delin,Lu Ningyi,Cui Defeng,Guo Peijian

Abstract

As an important component carrying the core function and service life of switching appliances, the selection and improvement of electrical contact materials is of great significance. AgSnO2, which is non-toxic, environmentally friendly and has excellent performance, has become the most promising contact material to replace AgCdO. However, it has deficiencies in machinability and electrical conductivity. The property of AgSnO2 contact material was improved by doping element Cr. The relationship between the mechanical and electrical properties of AgSnO2 contact materials and doping concentrations were investigated and analyzed by simulation and experiment. Based on the first principle, the elastic constants of supercell models Sn1−xCrxO2 (x = 0, 0.083, 0.125, 0.167, 0.25) were calculated. The results show that the material with a doping ratio of 25% is least prone to warp and crack, and the material with a doping ratio of 12.5% has the best toughness and ductility and the lowest hardness, which leads to molding and is subsequently easier to process. The Cr-doped AgSnO2 contacts with different doping proportions were prepared by the sol–gel and powder metallurgy method. Additionally, their physical performance and electrical contact properties were measured in experiments. The results show that the doped SnO2 powders prepared by the sol–gel method realize integration doping, which is consistent with the crystal model constructed in the simulation calculation. Sn0.875Cr0.125O2 has lower hardness, which is beneficial to process and form. Doping helps to stabilize the arc root, inhibit the ablation of contact by arc, reduces arc duration and arc energy, improves the resistance to arc erosion of AgSnO2 contact material, and makes electrical contact performance more stable. The contact material with a doping concentration of 16.7% has the best arc erosion resistance.

Funder

the National Natural Science Foundation of China

Local Science and the Central Guided Local Science and Technology Development Project of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3