Influence of Impeller Gap Drainage Width on the Performance of Low Specific Speed Centrifugal Pump

Author:

Wei Yangyang,Yang Yang,Zhou LingORCID,Jiang Lei,Shi Weidong,Huang Gaoyang

Abstract

The centrifugal pump is one of the most important pieces of energy-consuming equipment in various hydraulic engineering applications. This paper takes a low specific speed centrifugal pump as the research object. Based on the research method combining numerical calculation and experimental verification, the influence of the gap drainage structure on the performance of the low specific speed centrifugal pump and its internal flow field distribution were investigated. The flow field inside the low specific speed centrifugal pump impeller under different gap widths was studied. The comparison between the numerical calculation results and the experimental results confirms that the numerical calculations in this paper have high accuracy. It was found that the gap drainage will reduce the head of the low specific speed centrifugal pump, but increase its hydraulic efficiency. Using a smaller gap width could greatly improve the performance of the low specific speed centrifugal pump on the basis of a slight reduction in the head. The high-pressure leakage flow at the gap flows from the blade pressure surface to the suction surface can effectively suppress the low-pressure area at the impeller inlet. The flow rate of the high-pressure leakage flow increases with the gap width. Excessive gap width may cause a low-pressure zone at the inlet of the previous flow passage. These results could serve as a reference for the subsequent gap design to further improve the operating stability of the low specific speed centrifugal pump.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3