A Method to Detect Anomalies in Complex Socio-Technical Operations Using Structural Similarity

Author:

Danial Syed Nasir,Smith Doug,Veitch BrianORCID

Abstract

Traditional techniques for accident investigation have hindsight biases. Specifically, they isolate the process of the accident event and trace backward from the event to determine the factors leading to the accident. Nonetheless, the importance of the contributing factors towards a successful operation is not considered in conventional accident modeling. The Safety-II approach promotes an examination of successful operations as well as failures. The rationale is that there is an opportunity to learn from successful operations, in addition to failure, and there is an opportunity to further differentiate failure processes from successful operations. The functional resonance analysis method (FRAM) has the capacity to monitor the functionality and performance of a complex socio-technical system. The method can model many possible ways a system could function, then captures the specifics of the functionality of individual operational events in functional signatures. However, the method does not support quantitative analysis of the functional signatures, which may demonstrate similarities as well as differences among each other. This paper proposes a method to detect anomalies in operations using functional signatures. The present work proposes how FRAM data models can be converted to graphs and how such graphs can be used to estimate anomalies in the data. The proposed approach is applied to human performance data obtained from ice-management tasks performed by a cohort of cadets and experienced seafarers in a ship simulator. The results show that functional differences can be captured by the proposed approach even though the differences were undetected by usual statistical measures.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference49 articles.

1. FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems;Hollnagel,2012

2. Safety-I and Safety-II: The Past and Future of Safety Management;Hollnagel,2014

3. Integration of Resilience and FRAM for Safety Management

4. Practical Resilience Metrics for Planning, Design, and Decision Making

5. A Survey of Outlier Detection Methodologies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3