The Seasonal Variation of the Anomalously High Salinity at Subsurface Salinity Maximum in Northern South China Sea from Argo Data

Author:

Shen HuiORCID,Li LiORCID,Li Jianlong,He Zhiguo,Xia YuezhangORCID

Abstract

The large variations in salinity at the salinity maximum in the northern South China Sea (NSCS), as an indicator for the changes in the Kuroshio intrusion (KI), play an important role in the hydrological cycle. The high salinity here is more than 34.65 at the salinity maximum and is intriguing. In the past, the salinity was difficult to trace in the entire NSCS over long periods due to a lack of high-quality observations. However, due to the availability of accumulated temperature and salinity (T-S) profiles from the Argo program, it is now possible to capture subsurface-maximum data on a large spatiotemporal scale. In this study, the salinity maximum distributed in the subsurface of 80 to 200 m at a density of 23.0–25.5 σθ was extracted from decades of Argo data (on the different pressure surfaces, 2006–2019). We then further studied the spatial distribution and seasonal variation of the salinity maximum and its anomalously high salinity. The results suggest that a high salinity (salinity > 34.65, most of which is located at the shallow depths < 100 m) at the subsurface salinity-maximum layer often occurs in the NSCS, especially near the Luzon Strait, which accounts for about 23% of the total salinity maximum. In winter, the anomalously high salinity at the shallow subsurface salinity maximum can extend to the south of 17° N, while it rarely reaches 18° N and tends to locate at deeper waters in summer. The T-S values of the anomalously high-salinity water are between the mean T-S values in the NSCS and north Pacific subsurface water, implying that the outer sea water gradually mixes with the South China Sea water after passing through the Luzon Strait. Finally, our results show that the factors play an important role in the appearance and distribution of the anomalously high salinity at the subsurface salinity maximum, including the strength of the Kuroshio intrusion, the local wind stress curl and the anticyclonic eddy shedding from the loop current.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3