Dynamic Model Identification of Ships and Wave Energy Converters Based on Semi-Conjugate Linear Regression and Noisy Input Gaussian Process

Author:

Liu Yanjun,Xue YifanORCID,Huang Shuting,Xue Gang,Jing Qianfeng

Abstract

Reducing the carbon emissions of ships and increasing the utilization of marine renewable energy are the important ways to achieve the goal of carbon neutrality in ocean engineering. Establishing an accurate mathematical model is the foundation of simulating the motion of marine vehicles and structures, and it is the basis of operation energy efficiency optimization and prediction of power generation. System identification from observed input–output data is a practical and powerful method. However, for modeling objects with different characteristics and known information, a single modeling framework can hardly meet the requirements of model establishment. Moreover, there are some challenges in system identification, such as parameter drift and overfitting. In this work, three robust methods are proposed for generating ocean hydrodynamic models based on Bayesian regression. Two Bayesian techniques, semi-conjugate linear regression and noisy input Gaussian process regression are used for parametric and nonparametric gray-box modeling and black-box modeling. The experimental free-running tests of the KRISO very large crude oil carrier (KVLCC2) ship model and a multi-freedom wave energy converter (WEC) are used to validate the proposed Bayesian models. The results demonstrate that the proposed schemes for system identification of the ship and WEC have good generalization ability and robustness. Finally, the developed modeling methods are evaluated considering the aspects required conditions, operating characteristics, and prediction accuracy.

Funder

National Key Research and Development Program of China

Shandong Provincial Key Research and Development Program Major Scientific and Technological Innovation

Qingdao National Laboratory for Marine Science and Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3