Experimental Study on Motion Behavior and Longitudinal Stability Assessment of a Trimaran Planing Hull Model in Calm Water

Author:

Zou Jin,Lu ShijieORCID,Sun Hanbing,Zan Liru,Cang JiuyangORCID

Abstract

In this study, a high-speed planing trimaran hull form is designed, and the effects of different displacements and gravity longitudinal layouts on the performance of the trimaran planing hull in calm water are experimentally investigated in the towing tank of the China Special Vehicle Research Institute. Based on previous work, an innovative inner tunnel appendage hydroflap is mounted in the inner aft tunnel, located 1/8 L from the transom in the longitudinal direction with attack angles of 0° and 4°, respectively. Furthermore, a regular stern flap is mounted on the transom close to the chine. The towing test results show that, as the gravity center moves forward, the high-speed region resistance of the planing trimaran increases and the longitudinal stability is also strengthened. Further, the total resistance of the planing trimaran with a heavier displacement is larger while the average mass resistance declines; i.e., the resistance efficiency is improved. The results also indicate that the inner tunnel hydroflap and stern flap enhance the aft hull hydrodynamic lift and tunnel aerodynamic lift. As a result, mounting aft hull lift enhancement appendages can affect the bottom and inner tunnel pressure distribution and then cause a slight resistance decrease in the low-speed region. The value relationship of resistance between groups of appendages for the attached hull and bare hull is reversed at a speed of about Froude number 3.0. Although the aft hull lift enhancement appendages result in a higher resistance cost in the high-speed region, the longitudinal stability is effectively promoted and the occurrence speed of porpoising results in a delay of 1 to 2 m/s.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3