Late Pleistocene Boulder Slumps Eroded from a Basalt Shoreline at El Confital Beach on Gran Canaria (Canary Islands, Spain)

Author:

Galindo Inés,Johnson Markes E.ORCID,Martín-González EstherORCID,Romero Carmen,Vegas JuanaORCID,Melo Carlos S.ORCID,Ávila Sérgio P.ORCID,Sánchez NievesORCID

Abstract

This study examines the role of North Atlantic storms degrading a Late Pleistocene rocky shoreline formed by basaltic rocks overlying hyaloclastite rocks on a small volcanic peninsula connected to Gran Canaria in the central region of the Canary Archipelago. A conglomerate dominated by large, ellipsoidal to angular boulders eroded from an adjacent basalt flow was canvassed at six stations distributed along 800 m of the modern shore at El Confital, on the outskirts of Las Palmas de Gran Canaria. A total of 166 individual basalt cobbles and boulders were systematically measured in three dimensions, providing the database for analyses of variations in clast shape and size. The goal of this study was to apply mathematical equations elaborated after Nott (2003) and subsequent refinements in order to estimate individual wave heights necessary to lift basalt blocks from the layered and joint-bound sea cliffs at El Confital. On average, wave heights in the order of 4.2 to 4.5 m are calculated as having impacted the Late Pleistocene rocky coastline at El Confital, although the largest boulders in excess of 2 m in diameter would have required larger waves for extraction. A review of the fossil marine biota associated with the boulder beds confirms a littoral to very shallow water setting correlated in time with Marine Isotope Stage 5e (Eemian Stage) approximately 125,000 years ago. The historical record of major storms in the regions of the Canary and Azorean islands indicates that events of hurricane strength were likely to have struck El Confital in earlier times. Due to its high scientific value, the outcrop area featured in this study is included in the Spanish Inventory of Geosites and must be properly protected and managed to ensure conservation against the impact of climate change foreseen in coming years.

Funder

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3