Low Inertia Systems Frequency Variation Reduction with Fine-Tuned Smart Energy Controllers

Author:

Patsalides MinasORCID,Papadimitriou Christina N.,Efthymiou Venizelos

Abstract

The distributed and stochastic nature of Renewable Power Sources is certainly forming considerable challenges for the operation of the power system. Specifically, the stability of the system can be jeopardized when the penetration of inverter-based systems is high. Storage and the proper design of controllers is seen as part of the solution for supporting the future expansion of distributed systems. Thus, control strategies need to be designed to provide the appropriate support to the system and be capable of keeping the variation of the frequency within limits to keep the reliability of the system as high as possible. The main challenge is the appropriate parameterization of these distributed controllers and their coordination under the integrated grid approach in securing the stability of the system at all times. In this paper, a smart energy controller is utilized and incorporated into the projection case study for Cyprus’ real distribution grid for the year 2050 to evaluate its behavior and identify possible weaknesses in its usage. It was found that the parameterization and not only the architecture of such controllers is crucial in coping with the frequency variation and stability problem. From the simulation work and recorded results, it was observed that the smart energy controllers can maintain frequency variation within the desirable range when the parametrization of the controllers is chosen appropriately. This specific observation highlights the need to evaluate and configure the smart controllers while operating in the field, and possibly further research is required to provide the advanced capability to such systems to adjust dynamically during field operation, thereby achieving better response during abnormal conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview of renewable energy power system dynamics;Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources;2024

2. Oscillation Damping Neuro-Based Controllers Augmented Solar Energy Penetration Management of Power System Stability;Energies;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3