Abstract
Precision agriculture aims to use minimal inputs to generate maximal yields by managing the plant and its environment at a discrete instead of a field level. This new farming methodology requires localized field data including topological terrain attributes, which influence irrigation, field moisture, nutrient runoff, soil compaction, and traction and stability for traversing agriculture machines. Existing research studies have used different sensors, such as distance sensors and cameras, to collect topological information, which may be constrained by energy cost, performance, price, etc. This study proposed a low-cost method to perform farmland topological analytics using sensor implementation and data processing. Inertial measurement unit sensors, which are widely used in automated vehicle study, and a camera are set up on a robot vehicle. Then experiments are conducted under indoor simulated environments that include five common topographies that would be encountered on farms, combined with validation experiments in a real-world field. A data fusion approach was developed and implemented to track robot vehicle movements, monitor the surrounding environment, and finally recognize the topography type in real time. The resulting method was able to clearly recognize topography changes. This low-cost and easy-mount method will be able to augment and calibrate existing mapping algorithms with multidimensional information. Practically, it can also achieve immediate improvement for the operation and path planning of large agricultural machines.
Funder
National Institute of Food and Agriculture
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献